Самое важное о Machine Learning за 3 месяца. Курс от фаундера DeepLearning.AI Эндрю Ын
Хотите изучить фундаментальные концепции искуственного интеллекта? Есть уникальная возможность сделать это под руководством Эндрю Ын — ученого-провидца и основателя DeepLearning.AI, который возглавлял исследования по машинному обучению в Стенфорде. Рассказываем про его базовый трехмесячный курс для начинающих.
Специализация «Машинное обучение» — фундаментальная онлайн-программа, созданная в сотрудничестве между DeepLearning.AI и Stanford Online. Ориентированная на новичков, она научит основам машинного обучения и использованию этих методов для создания реальных приложений ИИ.
Преподаватель — провидец в области AI Эндрю Ын. Он возглавлял важнейшие исследования в Стэнфордском университете и новаторскую работу в Google Brain, Baidu и Landing.AI, направленную на развитие сферы AI.
Специализация дает развернутое представление о современном машинном обучении. Основное, что вы узнаете:
Контролируемое обучение: множественная линейная регрессия, логистическая регрессия, нейронные сети и деревья решений.
Неконтролируемое обучение: кластеризация, снижение размерности, рекомендательные системы.
Некоторые из лучших практик, используемых в Кремниевой долине для инноваций в области искусственного интеллекта и машинного: оценка и настройка моделей, подход к повышению производительности, ориентированный на данные, и многое другое.
За время обучения вы освоите ключевые концепции и получите практическое понимание, как быстро и эффективно применять ML для решения сложных реальных задач. Если хотите построить карьеру в области машинного обучения, эта специализация — хороший старт.
К концу обучения вы будете готовы:
Строить модели машинного обучения на Python с помощью популярных библиотек машинного обучения NumPy и scikit-learn.
Строить и обучать модели машинного обучения под наблюдением для задач прогнозирования и бинарной классификации, включая линейную регрессию и логистическую регрессию.
Строить и обучать нейронные сети с помощью TensorFlow для выполнения многоклассовой классификации.
Применяйте лучшие практики разработки машинного обучения, чтобы ваши модели обобщались на данные и задачи в реальном мире.
Строить и использовать деревья решений и методы ансамбля деревьев, включая случайные леса и усиленные деревья.
Использовать методы обучения без контроля для обучения без контроля: в том числе кластеризацию и обнаружение аномалий.
Строить рекомендательные системы с использованием метода коллаборативной фильтрации и метода глубокого обучения на основе контента.
Строить модели глубокого обучения с подкреплением.
Курс получил оценку от студентов 4.9 из 5 (на основании почти 22 тыс. ревью).
Собрали проверенные онлайн-курсы и интенсивы для Product Manager. Часть из них подойдёт тем, кто только присматривается к профессии, другие — для повышения квалификации опытных специалистов.
Как очистить Mac? Лучшие платные приложения для macOS
Чем больше вы используете свой Mac, тем больше он будет накапливать файлов и других данных. Большая часть этой информации — это то, что вам нужно — ваши документы, фотографии, видео и т. д., в то время как другая часть будет включать ненужные данные, которые просто засоряют устройство, замедляют его работу и бесполезно занимают место. Например, загруженные видео и мемы из телеграм-каналов, скриншоты трехлетней давности и прочая ерунда.К счастью, существует множество программ, которые просканируют накопившийся мусор и наведут за вас порядок. Но из чего выбирать прямо сейчас? Вот 5 платных очистителей Mac, на которые, на наш взгляд, стоит обратить внимание.
12 курсов по Java, на которые стоит обратить внимание новичкам и профи
Java по-прежнему входит в список самых популярных языков программирования. Вместе с Digital Defund составили список курсов, которые подойдут как новичкам, так и людям с опытом программирования, и помогут освоить этот востребованный язык.
Хочаце паведаміць важную навіну? Пішыце ў Telegram-бот
Галоўныя падзеі і карысныя спасылкі ў нашым Telegram-канале
Абмеркаванне
Каментуйце без абмежаванняў
Рэлацыраваліся? Цяпер вы можаце каментаваць без верыфікацыі акаўнта.
Рэлацыраваліся? Цяпер вы можаце каментаваць без верыфікацыі акаўнта.