Курс, чтобы свитчнуться в AI: Полное погружение в Data Science и ML для профессионалов
Планируете свичнуться в сферу AI, чтобы самому создавать умные системы, быть на переднем крае технологий и в айтишном топе по оплате труда? Сегодня не обязательно тратить годы на изучение теории — с поддержкой профессионалов можно овладеть необходимыми навыками гораздо быстрее. Рассказываем, как и где это сделать.
Машинное обучение и наука о данных всё больше определяют будущее самых разных отраслей, от медицины до транспорта. Умение работать с данными и обучать системы для принятия решений — навыки, которые становятся необходимыми не только для программистов, но и для специалистов в бизнесе, маркетинге, финансах.
Что нужно знать и уметь для работы с реальными проектами машинного обучения
Технологии машинного обучения и анализа данных — не просто модный тренд. Это важнейший инструмент бизнеса, который позволяет принимать более точные решения, автоматизировать процессы и анализировать огромные объёмы информации. Даже небольшие стартапы используют машинное обучение для повышения своей эффективности. А гиганты, такие как Google, Amazon и Tesla давно уже применяют его в своих операциях.
За термином «машинное обучение» скрываются сложные алгоритмы, которые помогают компьютерам обучаться на данных и делать выводы на основе этих данных. Один из ключевых аспектов машинного обучения — выбор алгоритма для решения конкретной задачи. Будь то классификация, регрессия или кластеризация — каждый подход имеет свои особенности и сферы применения. А от их выбора зависит успех проекта в области анализа данных.
Никакой алгоритм не даст результата, если данные не были правильно подготовлены. Процесс очистки и предобработки данных — важнейший этап в любом проекте машинного обучения. Именно на этом этапе вы избавляетесь от шумов, пропусков и прочих проблем, которые могут повлиять на точность модели. А визуализация данных с помощью таких инструментов, как Matplotlib и Seaborn, помогает глубже понять структуру данных, выявить аномалии и задать правильные направления для дальнейшего анализа.
Этот курс на Udemy позволит овладеть ключевыми навыками в области машинного обучения и анализа данных, начиная с азов и заканчивая продвинутыми проектами. Программа охватывает весь цикл работы с данными: от обработки до создания моделей и их оптимизации.
Под руководством опытных специалистов студенты научатся:
основам Python и его применению в проектах Data Science;
разработке моделей машинного обучения с использованием библиотек TensorFlow, Scikit-Learn и Pandas;
построению нейронных сетей и применению методов глубокого обучения;
визуализации данных с помощью Matplotlib и Seaborn;
применению различных методов классификации, регрессии и анализа временных рядов;
работе с реальными проектами, такими как системы прогнозирования и распознавания изображений.
Что делает этот курс особенным, так это его ориентированность на практику: студенты будут работать с настоящими данными, решать задачи, с которыми сталкиваются специалисты по всему миру, и учиться представлять результаты своих исследований так, чтобы впечатлить работодателей.
На протяжении всей программы обучения студенты получат доступ к необходимым ресурсам: от исходных данных и кода, до подробных объяснений каждой темы. Пройдя этот курс, вы сможете создать своё портфолио проектов, продемонстрировав реальные навыки, которые востребованы в крупнейших технологических компаниях мира, таких как Google, Tesla и Meta.
Для кого
Курс предназначен как для начинающих, так и для тех, кто уже имеет опыт в программировании, но хочет углубиться в Data Science.
Преподаватели
Преподаватели курса — профессионалы с реальным опытом работы в ведущих технологических компаниях.
Daniel Bourke — один из инструкторов курса — самоучка, прошедший путь от новичка до профессионала в машинном обучении. Он работал над решениями для крупнейших австралийских компаний, где создавал модели для анализа медицинских данных и оптимизации страховых случаев. Опыт Даниеля включает работу с большими данными в различных отраслях, что позволяет ему делиться реальными примерами из своей практики.
Продолжительность и формат
Курс содержит 44 часа видеоуроков, которые доступны на любом устройстве. В процессе обучения можно смотреть уроки, выполнять задания и параллельно с этим задавать вопросы преподавателю.
8 онлайн-курсов и интенсивов для Product Manager (февраль, 2024)
Собрали проверенные онлайн-курсы и интенсивы для Product Manager. В этой подборке: курсы от действующего PM в Microsoft, актуальная специализация по управлению продуктами в сфере AI, курсы для начинающих специалистов и лайфхаки как проходить собеседования на позицию продакта.
Как очистить Mac? Лучшие платные приложения для macOS (август 2024 г.)
Чем просканировать накопившийся за время работы мусор на диске вашего в Мака и навести порядок? Рассказываем о 7 платных приложениях для очистки macOS. Мы не называем их лучшими — просто советуем обратить на них внимание.
11 лучших сертификаций Coursera, чтобы освоить новую специальность (август, 2023)
Проанализировали Coursera в поисках лучших профессиональных программ на 2023 год, прохождение которых позволит получить востребованную специальность. Рассказываем, на какие направления обратить внимание и как сертификация Coursera помогает изменить вашу карьеру.
12 онлайн-курсов по языку Java для новичков и профессионалов (август, 2023)
Java по-прежнему входит в список самых популярных языков программирования. Вместе с Digitaldefynd мы составили список курсов по Java, которые подойдут как новичкам, так и людям с опытом программирования, чтобы освоить этот востребованный язык.
Хотите сообщить важную новость? Пишите в Telegram-бот
Главные события и полезные ссылки в нашем Telegram-канале
Обсуждение
Комментируйте без ограничений
Релоцировались? Теперь вы можете комментировать без верификации аккаунта.
Релоцировались? Теперь вы можете комментировать без верификации аккаунта.
Продаем лопаты!
Досвидания