Нейросеть создала привлекательные изображения лиц с помощью активности мозга пользователей
Финские ученые разработали нейросеть, которая создает изображения лиц, эстетически приятных для отдельных пользователей.
Генеративно-состязательная нейронная сеть предсказывает эстетические предпочтения участника, её точность достигает 80%. В исследовании приняли участие сотрудники и студенты Хельсинского университета. Результаты исследования были опубликованы в журнале IEEE Transactions in Affective Computing.
Сложность заключалась в выделении факторов, которые влияют на наше решение, приятна нам внешность человека или нет. Психологи выделяют геометрию лица: его симметричность, равное соотношение носа ко лбу и носа к подбородку. Также специалисты выделяют уровень гормонов, собственную привлекательность, а также социальный и культурный опыт.
Мишель Спейп со своей командой с помощью 30 тысяч изображений лиц обучили нейросеть создавать искусственные портреты, из них 240 (120 мужских и 120 женских) показали испытуемым. Ученые попросили участников эксперимента оценить привлекательность образов, в это время они регистрировали мозговую активность с помощью ЭЭГ.
Участники смотрели 8 серий по 4 изображения. Интерфейс мозг-компьютер передавал данные ЭЭГ нейросети, которая обучалась создавать привлекательные изображения для каждого участника. Через два месяца эксперимент повторили: созданные образы поместили среди других непривлекательных и нейтральных. Из 12 картинок участники отбирали самые привлекательные изображения и оценивали их по шкале от 1 до 5.
В итоге 86,7% изображений, созданных нейросетью, оказались для участников привлекательными. 20% непривлекательных, по мнению нейросети, образов были отмечены как привлекательные. Таким образом точность нейросети составила 83,33%. После эксперимента участники назвали сгенерированные изображения схожими с их представлениями об идеальной красоте, некоторые просили оставить копии картинок себе.
Читать на dev.by